Structural stability of TiO2 at high pressure in density-functional theory based calculations.
نویسندگان
چکیده
A new study on the pressure-induced phase transitions of TiO(2) has been performed using all-electron density-functional theory based computations with the projector augmented wave and the linearized augmented plane wave methods considering five experimentally observed structures. The static results yield a picture that is consistent with experiments, i.e., phase transitions with pressure are predicted as rutile --> monoclinic baddeleyite (MI) --> orthorhombic I (OI) --> cotunnite (OII) on compression, and OII --> OI --> MI --> columbite (TiO(2)II) on decompression. The elasticities of these five polymorphs are compared. Except for the baddeleyite structure, which is considerably softer than the other polymorphs, all phases show a zero pressure bulk modulus in the range of 200-240 GPa, consistent with compression results and the single crystal elastic constant; on the basis of these results we can say that the cotunnite phase is not a superhard TiO(2) polymorph as has been suggested previously. We further find that the rutile and columbite structures are energetically very similar, with the columbite structure favored slightly. All polymorphs are predicted as insulating with comparable band gaps (∼1.7-2.3 eV). Crystal field splitting for the Ti 3d electronic states leads to two distinct conduction bands in rutile and TiO(2)II for energies smaller than 8 eV, while there is a single conduction band for the other high pressure structures.
منابع مشابه
NH3 sensors based on novel TiO2/MoS2 nanocomposites: Insights from density functional theory calculations
Density functional theory calculations were performed to investigate the interactions of NH3 molecules with TiO2/MoS2 nanocomposites in order to completely exploit the adsorption properties of these nanocomposites. Given the need to further comprehend the behavior of the NH3 molecules oriented between the TiO2 nanoparticle and MoS2 monolayer, we have geometrically optimized the complex systems ...
متن کاملNH3 sensors based on novel TiO2/MoS2 nanocomposites: Insights from density functional theory calculations
Density functional theory calculations were performed to investigate the interactions of NH3 molecules with TiO2/MoS2 nanocomposites in order to completely exploit the adsorption properties of these nanocomposites. Given the need to further comprehend the behavior of the NH3 molecules oriented between the TiO2 nanoparticle and MoS2 monolayer, we have geometrically optimized the complex systems ...
متن کاملAdsorption Behaviors of Curcumin on N-doped TiO2 Anatase Nanoparticles: Density Functional Theory Calculations
The density functional theory (DFT) calculations were used to get information concerning the interaction of curcumin with pristine and N-doped TiO2 anatase nanoparticles. Three adsorption geometries of curcumin over the TiO2 anatase nanoparticles were studied in order to fully exploit the sensing properties of TiO2 nanoparticles. Curcumin molecule adsorbs on the fivefold coordinated titanium si...
متن کاملStructural and electronic properties of CO molecule adsorbed on the TiO2 supported Au overlayers: Insights from density functional theory computations
We have examined the adsorption behaviors of carbon monoxide (CO) molecule on TiO2 anatase supported Au overlayers. The results of density functional theory (DFT) calculations were used in order to gain insights into the effects of the adsorption of CO molecules on the considered hybrid nanostructures. We have investigated different adsorption geometries of CO over the nanoparticles....
متن کاملStructural and electronic properties of CO molecule adsorbed on the TiO2 supported Au overlayers: Insights from density functional theory computations
We have examined the adsorption behaviors of carbon monoxide (CO) molecule on TiO2 anatase supported Au overlayers. The results of density functional theory (DFT) calculations were used in order to gain insights into the effects of the adsorption of CO molecules on the considered hybrid nanostructures. We have investigated different adsorption geometries of CO over the nanoparticles....
متن کاملTheoretical Assessment of the First Cycle Transition, Structural Stability and Electrochemical Properties of Li2FeSiO4 as a Cathode Material for Li-ion Battery
Lithium iron orthosilicate (Li2FeSiO4) with Pmn21 space group is theoritically investigated as a chathode material of Li-ion batteries using density functional theory (DFT) calculations. PBE-GGA (+USIC), WC-GGA, L(S)DA (+USIC) and mBJ+LDA(GGA) methods under spin-polarization ferromagnetic (FM) and anti-ferromagnetic (AFM) procedure are used to investigate the material properties, includin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of physics. Condensed matter : an Institute of Physics journal
دوره 22 29 شماره
صفحات -
تاریخ انتشار 2010